CALORIMETRIC CV-V-T MEASUREMENTS AND THE EQUATION OF STATE

FOR n-PROPYL ALCOHOL

```
Kh. I. Amerkhanov*, I. M. Abdulagatov,
B. G. Alibekov, G. V. Stepanov,
and O. A. Bui
```

Calorimeteric C_v -V-T measurements have given a new equation of state for n-propyl alcohol, which incorporates qualitative features of the critical point and the stability limit for the homogeneous phase (spinodal).

The pseudospinodal hypothesis [8, 9] provides methods of calculating thermodynamic parameters [1-5] and transport ones [1, 6, 7], and it enables one to give a correct description of the behavior of a substance in the critical and metastable regions.

The pseudospinodal hypothesis indicates that the singular term in the equation for the isochoric specific heat takes the form

$$\frac{\rho C_V^{\text{sin}}}{T} = \frac{P_h}{T_h^2} A_{s0} \left(t_s^{-\alpha} - A_{s1} X_{\text{Oc}}^{2\beta} \left(\Delta \rho \right)^2 t_s^{\gamma-2} \right), \tag{1}$$

where $t_s = (T - T_s(\rho))/T_k$; $X_{oc} = B_c^{-1/\beta}$; $T_s(\rho)$ is the pseudospinodal curve.

We select an expression for $T_s(\rho)$:

$$T_{s}(\rho) = T_{h} \left[1 - \sum_{i=0}^{9} X_{is}^{\pm} |\Delta \rho|^{e_{i}} \right].$$
⁽²⁾

It is readily seen that (1) completely reproduces the power laws of scale theory [10] with this form for (2) on the asymptotic approach $T \rightarrow T_k$ and $\rho \rightarrow \rho_k$ on different lines on the thermodynamic surface (critical isochor, critical isotherm, saturation line). It has been shown that the form of (1) for C_v gives a qualitatively correct description [2] also of the structural features of P, ρ , T surface near the critical point.

We take the regular part of the equation for C_v in the form

$$C_{V}^{\text{reg}} = \frac{P_{h}}{\rho_{h}T_{h}} \sum_{j=1}^{6} \sum_{i=3}^{K_{j}} b_{ji} \omega^{j} \tau^{-i}.$$
 (3)

The coefficients in (1) and (3) are determined by minimizing

$$S(A_{s0}, X_{is}^{\pm}, b_{ji}) = \sum_{i=1}^{M} W_i (C_{Vi}^{en} - C_{Vi}^{sin} - C_{Vi}^{reg})^2, \qquad (4)$$

where $W_i = 1/\sigma_i^2$ is the weight of experimental point i as taken from the method of [11] and σ_i is the error variance $(C_{Vi}^{en} - C_{Vi}^{cal})$.

To minimize (4), we used 530 experimental values of C_V in the following ranges in specific volume and temperature: $1.457 \leq V \ (cm^3/g) \leq 10.026$ and $T_C(V) \leq T(K) \leq 658$. The coefficients in (1)-(3) derived from the reference set of C_V , V, and T data for n-propyl alcohol with minimization in (4) are given in Tables 1-3; the performance in the description of these data is illustrated by the histogram for the deviations (Fig. 1). The value δC_V^{en} indicated on the histogram has been calculated for the complete set of 530 points.

As reference curve we take the phase-equilbrium line $T_c(V)$ and use a standard thermodynamic relation to get the thermal equation of state from (1)-(3) as

*Deceased.

UDC 536.71:536.63

Physics Institute, Dagestan Branch, Academy of Sciences of the USSR, Makhachkala. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 2, pp. 275-281, August, 1986. Original article submitted June 3, 1985.

TABLE 1. Coefficients in the Singular Part of (1)

$A_{s0} = 11,12345$	$\alpha = 0,112$	$P_{k}=5,17$ MPa
$A_{s1} = 0,52283$	β=0,324	T _k =536,56 °K
$X_{00} = 0,13136$	γ=1,24	$\rho_k = 272,85 \text{ kg/m}^3$

TABLE 2. Coefficients in the Regular Part of (3) for the Isochoric Specific Heat of Propyl Alcohol

j	i	bjį	i	i	bjį
1 1 1	3 4 5	0,12858098 104 0,72091983 103 0,10924964 104	3 3	4 5	0,14247010 10 ³ 0,26179826 10 ³
1	6 7	$\begin{array}{c}0,35143243 \cdot 10^{3} \\ 0,99245674 \cdot 10^{3} \\ 0,42799945 \end{array}$	4 4 4	3 4 5	$\begin{array}{c} 0,56840981\cdot 10^{3} \\ 0,52490270\cdot 10^{3} \\0,65491396\cdot 10^{3} \end{array}$
2222	3 4 5 6		5 5 5	3 4 5	0,430555578.10 ³ 0,24071513.10 ² 0,27130452.10 ³
2 3	3	0,43/39373-10 ³ 0,49041702-10 ³	6 6 6	3 4 5	$\begin{array}{c} 0,10260060\cdot 10^{3}\\0,743357847\cdot 10^{2}\\0,12976357\cdot 10^{2}\end{array}$

TABLE 3. Coefficients in (2) for the Pseudospinodal Curve and Coexistence Curve

i	ρ>	ρ _k	ρ<ρ _k		
	x_{is}^+	x_{ic}^+	x_{is}^+		
0 1 2 3 4 5 6 7 8 9	$\begin{array}{c} 0,459760\cdot 10^{9}\\ 0,134944\cdot 10^{9}\\0,117173\cdot 10^{1}\\ 0,649257\cdot 10^{9}\\ 0,109001\cdot 10^{1}\\0,034548\cdot 10^{9}\\0,204209\cdot 10^{9}\\0,102408\cdot 10^{1}\\0,681132\cdot 10^{9}\\ 0,104434\cdot 10^{1}\\ \end{array}$	$\begin{array}{c} 0,131360\cdot 10^{0}\\ 0,385555\cdot 10^{-1}\\ -0,334781\cdot 10^{0}\\ 0,185502\cdot 10^{0}\\ 0,311430\cdot 10^{0}\\ -0,987080\cdot 10^{-2}\\ -0,583456\cdot 10^{-1}\\ -0,292594\cdot 10^{0}\\ -0,194609\cdot 10^{0}\\ 0,298382\cdot 10^{0}\\ \end{array}$	$\begin{array}{c} 0,45976\cdot 10^{9}\\ -0,227479\cdot 10^{1}\\ 0,217978\cdot 10^{1}\\ 0,330098\cdot 10^{1}\\ -0,285166\cdot 10^{1}\\ -0,306561\cdot 10^{1}\\ 0,560837\cdot 10^{1}\\ -0,223951\cdot 10^{1}\\ -0,113805\cdot 10^{1}\\ 0,156932\cdot 10^{1} \end{array}$	$\begin{array}{c} 0,131360\cdot10^{9}\\ -0,649940\cdot10^{9}\\ 0,622795\cdot10^{9}\\ 0,943136\cdot10^{9}\\ -0,814761\cdot10^{9}\\ -0,875887\cdot10^{9}\\ 0,160239\cdot10^{1}\\ -0,639861\cdot10^{9}\\ -0,325156\cdot10^{9}\\ 0,448378\cdot10^{9}\\ \end{array}$	

$$\pi = \pi_{c} (\tau_{c} (\rho)) + \left(\frac{\partial \pi}{\partial \tau}\right)_{c} \Delta \tau_{c} + \pi_{reg} + \Delta \pi_{irr} , \qquad (5)$$

where

$$\begin{split} \pi_{\mathrm{reg}} &= \sum_{j=1}^{6} \sum_{i=3}^{K_{j}} \left(\frac{j}{i}\right) b_{ji} \omega^{1+j} \left[\frac{\tau^{1-i} - \tau_{\mathrm{c}}^{1-i}}{(1-i)\frac{1}{2}} - \tau_{\mathrm{c}}^{-i} \Delta \tau_{\mathrm{c}}\right];\\ \Delta \pi_{\mathrm{irr}} &= A_{s0} \left[\frac{\Delta \tau_{\mathrm{s}}^{2-\alpha} - \Delta \tau_{\mathrm{sc}}^{2-\alpha}}{(1-\alpha)(2-\alpha)} - \frac{\Delta \tau_{sc} \Delta \tau_{\mathrm{c}}}{(1-\alpha)} - A_{s1} X_{0c}^{2\beta} (\Delta \rho)^{2} F_{1}\right] + \\ &+ A_{s0} \omega^{-1} \left[\frac{\Delta \tau_{\mathrm{s}}^{1-\alpha} - \Delta \tau_{\mathrm{sc}}^{1-\alpha}}{(1-\alpha)} t'_{\mathrm{s}} - \Delta \tau_{\mathrm{sc}}^{-\alpha} \Delta \tau_{\mathrm{c}} t'_{\mathrm{s}} + 2A_{s1} X_{0c}^{2\beta} \omega^{2} \Delta \rho F_{1} - A_{s1} X_{0c}^{2\beta} (\Delta \rho)^{2} t'_{\mathrm{s}} F_{2}\right];\\ F_{1} &= \frac{\Delta \tau_{\mathrm{s}}^{\gamma} - \Delta \tau_{\mathrm{sc}}^{\gamma}}{\gamma (\gamma - 1)} - \frac{\Delta \tau_{\mathrm{cs}}^{\gamma - 1} \Delta \tau_{\mathrm{c}}}{(\gamma - 1)};\\ F_{2} &= \frac{\Delta \tau_{\mathrm{s}}^{\gamma - 1} - \Delta \tau_{\mathrm{sc}}^{\gamma - 1}}{(\gamma - 1)} - \Delta \tau_{\mathrm{sc}}^{\gamma - 2} \Delta \tau_{\mathrm{c}}; \end{split}$$

where $\Delta \pi_{irr}$ is the curvilinear part of the equation of state corresponding to the irregular term in (1), with π_c , $\tau_c(\rho)$ the equations for the vapor-pressure curve and the coexistence curve, and $(\partial \pi/\partial \tau)_c$ the partial derivative of the reduced pressure with respect to the reduced temperature on the coexistence curve from the side of the single-phase region.

Fig. 1. Histogram for the deviations of the observed isochoric specific heat of n-propyl alcohol from the calculated values.

TABLE 4. Coefficients in (6) ($\Delta = 0.5$)

i	x _i	i	x _i
1 2 3 4 5	$\begin{array}{c} 0,259790\cdot10^2\\ -0,527378\cdot10^1\\ 0,995247\cdot10^0\\ -0,827189\cdot10^1\\ -0,774546\cdot10^1\end{array}$	6 7 8 9 10	$\begin{array}{c} 0,227186\cdot 10^{0}\\ -0,300494\cdot 10^{2}\\ 0,155645\cdot 10^{2}\\ 0,358681\cdot 10^{2}\\ 0,269137\cdot 10^{2} \end{array}$

TABLE 5. Coefficients in (8)

i	Y_i^+ ($\rho > \rho_h$)	$Y_i^-(\rho < \rho_h)$	i	$Y_i^+(\rho > \rho_k)$	$Y_i^-(\rho < \rho_k)$
1 2 3 4 5 6	$\begin{array}{c} 0,12285705\cdot 104\\ 0,58832476\cdot 103\\ 0,84795402\cdot 10^1\\0,15599185\cdot 104\\ 0,57992722\cdot 103\\0,12819169\cdot 104 \end{array}$	$\begin{array}{c}0, 45006606\cdot 10^3\\ 0, 86248916\cdot 10^2\\ 0, 73332492\cdot 10^1\\ 0, 51205206\cdot 10^3\\0, 32636607\cdot 10^3\\0, 57798635\cdot 10^2 \end{array}$	7 8 9 10 11 12	$\begin{array}{c}0,84806141\cdot 10^3\\0,34844294\cdot 10^3\\0,12075210\cdot 10^3\\0,38607973\cdot 10^2\\0,11817937\cdot 10^2\\0,35262614\cdot 10^1 \end{array}$	0,48855787.10 ¹ 0,32752811.10 ⁰ 0,19725931.10 ⁻¹ 0,11202897.10 ⁻² 0,61402886.10 ⁻⁴ 0,32889476.10 ⁻⁴

For $\pi_c(\tau_c)$ we used an expression implied by the extended law from scale theory [12]:

$$\pi_{\rm c} = X_1 t_{\rm c}^{2-\alpha} + X_2 t_{\rm c}^{2-\alpha+\Delta} + \sum_{i=3}^{10} X_i t_{\rm c}^{i-3}.$$
 (6)

The values of $(\partial \pi/\partial \tau)_C$ on the coexistence curve were calculated from the thermodynamic relation

$$\left(\frac{\partial \pi}{\partial \tau}\right)_{c} = \left(\frac{d\pi_{c}}{d\tau}\right) \left(1 + \frac{\Delta C_{V}}{\sigma}\right), \qquad (7)$$

where ΔC_V is the step in the specific heat on traversing the phase-equilbrium boundary, $\sigma = -(\tau/\rho)(d\pi_c/d\tau)(d\rho/d\tau)_c$; $d\pi_c/d\tau$ is the total derivative of the reduced pressure for the saturated vapor with respect to the reduced temperature, and $(d\rho/d\tau)_c$ is the derivative of the density on the coexistence curve with respect to the reduced temperature. It is evident from (7) that $(\partial \pi/\partial \tau)_c$ on the coexistence curve has two values corresponding to different values of $(\partial \rho/d\tau)_c$ on the vapor and liquid sides.

The values of $(\partial \pi / \partial \tau)_c$ derives from (7) are described by

$$\left(\frac{\partial \pi}{\partial \tau}\right)_{c} = Y_{1}^{\pm} t_{c}^{1-\alpha} + Y_{2}^{\pm} t_{c}^{1-\alpha+\Delta} + \sum_{i=3}^{12} Y_{i}^{\pm} t_{c}^{i-3}, \qquad (8)$$

where the superscript + in Y_i^{\pm} corresponds to $\rho > \rho_k$ and the superscript - to $\rho < \rho_k$.

Tables 4 and 5 give the coefficients in (6) and (8); when we determined the coefficients in (6), we used the experimental data of [13, 14] for the range 400-536°K as the reference set.

Fig. 2. Deviations of the observed values for the saturation vapor pressure [13, 14] (a) and density of the boiling liquid [13, 15] (b) from the calculatted values for n-propyl alcohol: 1) [13]; 2) [14]; 3) [13]; 4) [15]. δP_s ; $\delta \rho_s$ ', %; T, °K.

TABLE 6. Thermodynamic Parameters of Propyl Alcohol: V in $m^3/$ kg, P in MPa, S in kJ/kg, and H in kJ/kg

V-10-3	P	s	Н	V·10-*	P	s	H
T = 450 K				T =	550 °K		
1,55 1,50 1,45	4,20 13,41 27,39 <i>T</i> =	1,5018 1,4709 1,4389 475 K	551,07 551,27 556,89	3,4 3,2 3,0 2,8 2,6	6,33 6,43 6,57 6,80 7 94	2,4693 2,4525 2,4302 2,4052 2,4014	1046,39 1031,84 1018,20 1006,44 1011 80
1,65 1,60 1,55 1,50 1,45	5,18 10,70 18,34 29,13 47,55	1,7041 1,6860 1,6630 1,6325 1,5982	646,15 645,68 647,49 649,56 659,79	2,4 2,2 2,0 1,9 1,8 1,7	8,04 9,84 13,88 17,63 23,62 33,50	2,3311 2,2975 2,2502 2,2258 2,1986 2,1548	973,27 958,71 941,28 934,50 930,57 923,57
	T =	500 K		1,6	50,19	2,1022	921,48
1,90 1,85	2,34 3,69	1,9507	761,21 757,40		T =	600 K	
1,80 1,75 1,70 1,65 1,60 1,55 1,50	5,59 8,24 11,88 16,80 23,39 32,26 45,46	1,9251 1,9042 1,8833 1,8543 2,8365 1,8136 1,7820	754,65 748,43 744,40 738,51 739,30 742,49 746,92	11,0 10,0 9,0 8,0 7,0 6,0 5,0	5,16 5,50 5,89 6,36 6,97 6,78 8,78	3,0212 3,0034 2,9865 2,9639 2,9315 2,8991 2,8550 2,8550	1351,23 1343,73 1337,08 1327,19 1312,65 1297,90 1268,70
44.0	T =	525 °K	1 1100 40	4,0	10,29	2,7677	1234,91
11,0 10,0 9,0 2,2 2,1 2,0 1,95 1,90 1,85 1,80 1,75 1,70	3,84 4,00 4,16 4,29 4,67 5,80 7,17 8,36 9,91 11,92 14,55 18,00 22,52	2,6514 2,6271 2,6010 2,5661 2,1636 2,1397 2,1173 2,1038 2,0928 2,0789 2,0659 2,0447 2,0237	$\begin{array}{c} 1129,40\\ 1117,93\\ 1105,50\\ 1087,81\\ 875,40\\ 855,10\\ 856,46\\ 851,66\\ 848,37\\ 845,02\\ 842,93\\ 837,53\\ 834,44\\ \end{array}$	3,6 3,4 3,2 3,0 2,8 2,6 2,4 2,2 2,0 1,90 1,80 1,75	$\begin{array}{c} 11,11\\ 11,57\\ 12,15\\ 12,84\\ 13,65\\ 14,75\\ 16,56\\ 20,01\\ 21,13\\ 33,56\\ 43,68\\ 50,84\\ \end{array}$	2,7485 2,7272 2,7067 2,6525 2,6204 2,5764 2,5450 2,4995 2,4734 2,4405 2,4136	1228,48 1212,23 1196,12 1180,87 1167,63 1156,00 1134,68 1122,33 1111,05 1107,07 1105,63 1101,96
$1,65 \\ 1,60$	1,65 28,43 1,9944 829,51 1,60 36,20 1,9759 831,23		829,51 831,23		T =	650 °K	
1,55	$\begin{array}{c} 46,85\\ T = \end{array}$	1,9512 550 K	835,59	9,0 8,0 7,0	6,79 7,40 8,29	3,2028 3,1824 3,1532	1480,28 1472,03 1460,38
$ \begin{array}{c} 11,0\\ 9,0\\ 8,0\\ 7,0\\ 6,0\\ 5,0\\ 4,0\\ 3,8\\ 3,6\\ \end{array} $	4,33 4,57 4,83 5,10 5,39 5,69 5,69 6,10 6,13 6,27	2,7873 2,7667 2,7455 2,7160 2,6772 2,6368 2,5867 2,5197 2,5038 2,4873	1207,70 1198,55 1189,15 1175,30 1155,53 1134,76 1100,50 1066,67 1060,06 1061,14	0,0 5,0 3,8 3,6 3,4 3,2 2,8 2,4 2,2 2,4 2,2 1,95 1,90	9,02 11,53 14,16 14,79 16,34 17,19 18,21 19,32 20,47 21,91 24,41 29,74 41,85 46,87 53,14	3,1243 3,0826 2,9940 2,9743 2,9526 2,9321 2,9066 2,8771 2,8499 2,8086 2,7785 2,7277 2,7103 2,6932	1449,03 1424,62 1393,25 1385,79 1388,34 1372,18 1356,35 1341,46 1328,70 1317,98 1298,56 1290,60 1283,01 12,81 12,81 1281,49

Ű

Fig. 3. Deviations of the observed densities [16, 17] of n-propyl alcohol from the calculated ones (P in bar): 1) 25; 2) 35; 3) 50; 4) 75; 5) 99; 6) 69; 7) 146.3; 8) 194.6; 9) 243; 10) 291; 11) 388; 12) 485; 13) 170.4.

Fig. 4. Deviations of observed densities [18] of n-propyl alcohol from the calculated values (P in bar): 1) 66.7; 2) 60; 3) 53; 4) 73.4; 5) 46.7; 6) 40; 7) 33.3. $\delta\rho$, %.

The equation for the coexistence curve $\tau_c(\rho)$ appearing in (5) was taken in a form analogous to the pseudospinodal equation of (2); the coefficients were determined from the T_c , ρ_c , and ρ_s data of [14, 15] in the range 390-536°K and are given in Table 3.

Figures 2-4 show the deviations of the experimental data [13-18] from the calculated densities; Table 6 gives the calculated values for some thermodynamic parameters of n-propyl alcohol.

NOTATION

B_c, amplitude of coexistence curve; $_0$, β , γ , Δ , critical indices; $\Delta \rho = (\rho - \rho_k)/\rho_k$; $\varepsilon_0 = 1/\beta$, $\varepsilon_1 = (1 + \Delta)/\beta$, $\varepsilon_2 = \delta$, $\varepsilon_3 = 2/\beta - 1$, $\varepsilon_4 = (1 + 2\Delta)/\beta$, $\varepsilon_5 = (\beta + \delta\Delta)/\beta$, $\varepsilon_6 = 2(\delta - 1)$, $\varepsilon_7 = (2 + \Delta)/\beta - 1$; $\varepsilon_8 = (3 - \alpha)/\beta - 2$, $\varepsilon_9 = 3/\beta - 2$; $\tau = T/T_k$; $\omega = \rho/\rho_k$; $\pi = P/P_k$; $\tau_c(\rho) = T_c(\rho)/T_k$, coexistence curve; $\Delta \tau_S = \tau - \tau_S(\rho)$; $\Delta \tau_c = \tau - \tau_c(\rho)$; $\Delta \tau_{SC} = \tau_c(\rho) - \tau_S(\rho)$; $t_c = |\tau_c(\rho) - 1|$; $t_s' = -(d\tau_S/d\rho)$. Subscripts: c, value of corresponding quantity on coexistence curve; s, value on pseudospinodal curve.

LITERATURE CITED

- 1. L. P. Filippov, "Binodal, spinodal, and transcritical region," Teplofiz. Vys. Temp., 22, No. 4, 679-686 (1984).
- V. F. Lysenkov and E. S. Platunov, Surveys on the Thermophysical Parameters of Substances [in Russian], No. 1 (45), IVTAN SSR, Moscow (1984).
- I. M. Abdulagatov and B. G. Alibekov, "A method of recovering the stability bound to the homogeneous phase (spinodal) from inhomogeneous data," Teplofiz. Vys. Temp., <u>22</u>, No. 5, 893-897 (1984).
- 4. I. M. Abdulagatov and B. G. Alibekov, "Deriving a scale-theory equation on the basis of the pseudospinodal curve method," Inzh.-Fiz. Zh., <u>45</u>, No. 6, 1027-1028 (1983).
- I. M. Abdulagatov and B. G. Alibekov, "Relation between the homogeneous functions in scale theory and the pseudospinodal curve method," Teplofiz. Vys. Temp., <u>22</u>, No. 3, 612-614 (1984).
- I. M. Abdulagatov, "Use of the pseudospinodal curve method in the analytic description and calculation of kinetic coefficients over a wide region around the critical point," Zh. Fiz. Khim., <u>58</u>, No. 10, 2456-2458 (1984).
- T. S. Akhundov, I. M. Abdulagatov, and R. T. Akhundov, "An equation for calculating the viscosities of benzene and toluene," Inzh.-Fiz. Zh., <u>48</u>, No. 3, 506-507 (1985).
- J. Benedek, "Optical-mixing spectroscopy and its application in physics, chemistry, biology, and engineering," Usp. Fiz. Nauk, <u>106</u>, No. 3, 481-505 (1972).
- I. M. Abdulagatov and B. G. Alibekov, "The pseudospinodal curve method in describing scale features of behavior near the critical point," Zh. Fiz. Khim., <u>57</u>, No. 2, 438-439 (1983).

- M. A. Anisimov, "Studies on critical phenomena in liquids," Usp. Fiz. Nauk, <u>114</u>, No. 2, 249-294 (1974).
- 11. A. A. Vasserman, "Estimating the weights of experimental data in compiling an equation of state for a real gas," Teplofiz. Vys. Temp., <u>19</u>, No. 5, 1103-1105 (1981).
- 12. F. J. Wagner, "Correction to scaling laws," Phys. Rev., B, 5, 4529-4536 (1972).
- A. J. Kubicer and P. T. Eubank, "Thermodynamic properties of n-propanol," J. Chem. Eng. Data, <u>17</u>, No. 2, 232-235 (1972).
- D. Ambrose and R. Townsend, "Thermodynamic properties of organic oxygen comounds. Part IX. The critical properties and vapor pressures above five atmospheres of six aliphatic alcohol," J. Chem. Soc., <u>7</u>, 3614-3625 (1963).
 Kh. I. Amerkhanov, G. V. Stepanov, O. A. Bui, and K. A. Shakhbanov, "An experimental
- 15. Kh. I. Amerkhanov, G. V. Stepanov, O. A. Bui, and K. A. Shakhbanov, "An experimental study of the temperature dependence of the density for propanol-1 on the phase-equilibrium curve," Thermophysical Properties of Liquids and Gases [in Russian], Dag. FAN SSSR, Makhachkala (1979), pp. 3-8.
- I. F. Golubev, T. N. Vasil'kovskaya, and V. S. Zolin, "An experimental study of the densities of aliphatic alcohols at various temperatures and pressures," Inzh.-Fiz. Zh., <u>38</u>, No. 4, 668-670 (1980).
- I. F. Golubev, T. N. Vasil'kovskaya, and V. S. Zolin, "The densities of n-propyl and isopropyl alcohols at various temperatures and pressures," Thermophysical Parameters of Saturated Alcohols [in Russian], Trudy GIAP, No. 54, 5-15 (1979).
- 18. S. Young, "The vapor-pressure specific volumes, heat vaporizations and critical constants of thirty pure substances," Scient. Proc. RDS, 12, No. 31, 374-384 (1910).

DEBYE TEMPERATURE IN THE HIGH-TEMPERATURE LIMIT AND

ANHARMONIC COMPONENT OF THE HEAT CAPACITY OF VANADIUM

Zh. M. Tomilo

UDC 536.633.2:546.881

Values are presented for the Debye temperature in the high-temperature limit and the anharmonic component of the specific heat of vanadium at constant volume, based on heat-capacity measurements over the range 77-300°K.

In the high-temperature limit the Debye temperature characterizes the mean frequency $\langle \omega \rangle$ of the phonon spectrum [1] and is defined by the expression

$$\Theta_{\infty}^{2} = \frac{5\hbar^{2}}{3k^{2}} \langle \omega^{2} \rangle.$$
⁽¹⁾

To determine Θ_{∞} by the absolute adiabatic method, the heat capacity of single-crystal vanadium was measured over the temperature range 77-300°K. Measurements were performed by a method similar to that used for study of the heat capacity of scandium, yttrium, and lanthanum [2], to an accuracy of 2% over the indicated temperature range. The specimen studied had a ratio of resistances at T = 300°K and T = 6°K (ρ_{300}/ρ_6) equal to 30.

The curve of the temperature dependence of heat capacity of vanadium showed anomalies in the form of a peak at a temperature of 210°K with $\Delta C_p = 2.5 \text{ J/°K} \cdot \text{mole}$ and an increase in C_p by 3-4% at 240°K.

The specific heat of vanadium at constant volume C_v was calculated from the mean values of specific heat at constant pressure C_p . In calculating C_v the temperature dependence of the volume expansion coefficient β of vanadium given in [3] was used with the electronic component of the specific heat C_{el} with consideration of electron-phonon interaction from [4]. Using the values of the lattice component of specific heat thus obtained ($C_{lat} = C_v - C_{el}$) the temperature dependence of the Debye temperature of vanadium $\Theta(T)$ (Fig. 1, curve 1) was calculated from the relationship

Solid State and Semiconductor Physics Institute, Academy of Sciences of the Belorussian SSR, Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 51, No. 2, pp. 281-284, August, 1986. Original article submitted May 31, 1985.